Existence and approximation results for shape optimization problems in rotordynamics
نویسندگان
چکیده
We consider a shape optimization problem in rotordynamics where the mass of a rotor is minimized subject to constraints on the natural frequencies. Our analyis is based on a class of rotors described by a Rayleigh beam model including effects of rotary inertia and gyroscopic moments. The solution of the equation of motion leads to a generalized eigenvalue problem. The governing operators are non-symmetric due to the gyroscopic terms. We prove the existence of solutions for the optimization problem by using the theory of compact operators. For the numerical treatment of the problem a finite element discretization based on a variational formulation is considered. Applying results on spectral approximation of linear operators we prove that the solution of the discretized optimization problem converges towards the solution of the continuous problem if the discretization parameter tends to zero. Finally, a priori estimates for the convergence order of the eigenvalues are presented and illustrated by a numerical example.
منابع مشابه
Existence and Approximationin Optimal Shape
We consider a system given by a second order elliptic equation with jumps in the coeecients. This models a body made of two diierent materials and we study the question of the material distribution that minimizes a certain cost functional. We introduce a local compactness condition for a class of characteristic functions to obtain the existence of the optimum. We also indicate a new approximati...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملAn effective method based on the angular constraint to detect Pareto points in bi-criteria optimization problems
The most important issue in multi-objective optimization problems is to determine the Pareto points along the Pareto frontier. If the optimization problem involves multiple conflicting objectives, the results obtained from the Pareto-optimality will have the trade-off solutions that shaping the Pareto frontier. Each of these solutions lies at the boundary of the Pareto frontier, such that the i...
متن کاملOptimal Shape Design for a Cooling Pin Fin Connection Profil
A shape optimization problem of cooling fins for computer parts and integrated circuits is modeled and solved in this paper. The main purpose is to determine the shape of a two-dimensional pin fin, which leads to the maximum amount of removed heat. To do this, the shape optimization problem is defined as maximizing the norm of the Nusselt number distribution at the boundary of the pin fin's con...
متن کاملShape optimization for stationary Navier -
Abstract: This work discusses geometric optimization problems governed by stationary Navier-Stokes equations. Optimal domains are proved to exist under the assumption that the family of admissible domains is bounded and satisfies the Lipschitz condition with a uniform constant, and in the absence of the uniqueness property for the state system. Through the parametrization of the admissible shap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 109 شماره
صفحات -
تاریخ انتشار 2008